Name of the Programme: Ph.D. (Physics) Course Code: PHY-700 Title of the Course: Research Methodology Number of Credits: 04 Effective from AY: 2022-23

Lifective nom Al.				
Pre-requisites	M.Sc. in Physics			
for the Course:				
Course	The aim of course is to orient Pre-PhD students towards research by introd	The aim of course is to orient Pre-PhD students towards research by introducing		
Objectives:	them to research methodology and data analysis in Physics. The basic principl			
	different experimental methods and characterization techniques will be cov			
	along with computer programming and numerical methods			
Content:	UNITI	5 hours		
	Research methods and research methodology in Physics, Basic and			
	applied research, Experimental and Theoretical research, Presenting a			
	scientific seminar-oral report, Art of writing a research paper and thesis,			
	Outline of a report, Layout of a research report/ PhD thesis, Quality of			
	research			
	Documentation using Latex,	10 hours		
		15 hours		
	Uncertainties in measurements: Measuring errors, Uncertainties, Parent			
	and sample distributions, Mean and standard deviation of distributions,			
	Binomial distributions, Poisson distribution, Gaussian or normal Error			
	distribution, Lorentzian distribution; Approximation and errors in			
	computing: Significant digits, Numerical errors, Modelling errors,			
	Conditioning and stability, Convergence of iterative processes.			
	Error analysis: Instrumental and statistical uncertainties, Propagation of			
	errors, Application of error equations, Method of least squares,			
	Statistical fluctuations, Probability tests, χ^2 test of a distribution.			
	Curve fitting (Regression analysis); Least square fit to a straight line, Error			
	estimation of the fitted parameters, Limitations of the least square			
	method, Least squares fit to a polynomial, matrix solution, Goodness of a			
	fit, Linear correlation coefficient, Multivariable correlations.			
	UNIT III (For Experimental students)	30 hours		
	1. Methods of Material Preparation:			
	Crystal growth, Single crystal, Zone melting, Epitaxy, Compaction and			
	solid state sintering, melting, annealing, methods of quenching,			
	combustion, microwave, sol-gel synthesis process, deposition			
	techniques, chemical analysis.			
	2. Vacuum Techniques:			
	Production and measurement of vacuum Different types of vacuum			
	systems and gauges their working and limitations. Leak detection			
	3 Methods of Characterization:			
	X-ray diffraction Raman Spectroscopy IR Spectroscopy UV-Visible			
	spectroscopy Mossbauer spectroscopy Electrical transport and			
	magnetic measurement techniques. Scanning and transmission electron			
	magnetic measurement techniques, Scanning and transmission electron			
	i inicioscopy, direferidar scanning caldrinedry – Principles.			

		instrumentation and applications.	
		UNIT III (For Theory students)	30 hours
	1.	Computer Programming and Numerical Techniques:	
		C/Fortran/Python programming,	
		Finite differential calculus, Interpolation and extrapolation, Roots of	
		equations, Solution of simultaneous Linear algebraic equation, Linear	
		and non-linear least squares, Curve fitting, Numerical differentiation and	
		integration, Fourier transform techniques, Numerical solution of	
		ordinary differential equations, Matrix Eigen value problem, Monte Carlo	
		and Maximum entropy method.	
Pedagogy:		Test paper/Assignments/Presentations/Self-study	
References/	1.	Research Methods for Science, M. P. Marder, Cambridge University Press,	2011.
Readings:	2.	Research Methodology Techniques and Trends Khanzode, V, APH Publishir	ng
		Corporation House, 1995.	
	3.	Research Methodology, S. Rajasekar, P. Philominathan, V. Chinnathambi, a	ırXiv:
		physics /0609001v3 (2006)	
	4.	Data Reduction and Error Analysis for the Physical Sciences 3rd Ed. by Phili	p R
	_	Bevington and D Keith Robinson, McGraw – Hill (2003)	
	5.	An Introduction to Error Analysis: The Study of Uncertainties in Physical	
	c	Niedsurements, 2nd Ed. John R. Taylor, University Science Books (1997)	on (1072)
	0.	Crustal Growth C. H. J. Goodman. Planum Pross. New York	511 (1972)
	7. Q	Elements of X-ray Diffraction B D Cullitty Stock S B Prentice Hall New I	arcav
	0.	(2001)	ersey
	9.	Fundamentals of Vacuum Technology, A. Pipko, V. Pliskovsky, B. N. Korolev	<i>ı,</i> Mir
		Publishers, Moscow (1984)	
	10	. Thin Film Technology and Applications, K. L. Chopra, Tata McGraw-Hill, Ne	w Delhi
		(1985)	
	11	. An Introduction to Electron Microscopy Instrumentation, Imaging and Prep	paration,
		Andres Kaech (reading material)	_
	12	. Fundamentals of Molecular Spectroscopy, C. Banwell and E. M. McCash, Ta	ata
	12	Numerical Pecipes in C. C. W. Press, S. A. Toukolsky, W. T. Vetterling and R.	D
	13	Elannery Cambridge University Press (2008)	.г.
	14	Introduction to numerical programming: a practical guide for scientists and	4
		engineers using Python and C/C++. Beu. Titus A., CRC Press (2015)	A
	15	. Fortran 90/95 for Scientists and Engineers, Stephen J. Chapman, McGraw-	Hill Higher
		Education, (2004)	
	16	. Computer Programming in Fortran 90 and 95, V. Rajaraman, PHI Learning I	Pvt. Ltd.
		(1997)	
Course		The students will	
Outcomes:	1.	get familiarized with research methodology and data analysis techniques.	
	2.	be able to adopt the data analysis, fitting, and error calculations in their re	search
		work.	
	3.	gain knowledge in different experimental characterization techniques and	
		theoretical methods.	
	4.	be able to better plan, execute their research and present it.	